
JavaScript

CMS Connector API - Contentful
This document outlines the functionalities and usage of the migration-contentful
package, which is designed to simplify the process of migrating data from Contentful to
Contentstack CMS. It provides key utility functions for extracting content types, mapping fields,
and handling locales, ensuring a smooth and efficient migration process. The following sections
detail the installation, available functions, and their specific behaviors.

migration-contentful Package

Overview

The migration-contentful package is used to simplify the process of migrating data from
Contentful to Contentstack CMS. It helps with extracting content types, mapping fields, and
handling locales. This package contains key utility functions to facilitate these tasks.

Installation

In your package.json, you reference this package from your local file system like this:

"dependencies": {

 "migration-contentful": "file:migration-contentful"

}

This makes the migration-contentful package available locally without the need to fetch it
from an external registry like npm.

Key Functions

You can import the following functions from the package to use in your project:

1. extractContentTypes:

○ This function extracts content types from the exported Contentful data and saves
them locally.

○ It processes the data to create a structured format that can be used for migration
to another CMS.
const { extractContentTypes } = require('migration-contentful');

If you have any questions, please reach out to tso-migration@contentstack.com.

https://docs.google.com/document/d/11M9OUyaAO5eu3Wt-V5hhLzis7ExFhdhJqG-4XY4aOHs/edit?tab=t.p841gsd3pqnn
mailto:tso-migration@contentstack.com

JavaScript

2. createInitialMapper:

○ Once the content types are extracted, this function transforms them into a
mapping schema. This schema helps in migrating the data by ensuring fields are
mapped correctly between systems.
const { createInitialMapper } = require('migration-contentful');

3. extractLocale:

○ This function extracts locale information (languages and region data) from
Contentful exports. This is crucial for migrating content with language variations
to the new CMS.
const { extractLocale } = require('migration-contentful');

How to Use

To use the functions in your code, simply import them like this:

const { extractContentTypes, createInitialMapper, extractLocale } =
require('migration-contentful');

These functions will allow you to:

● Extract content types from a Contentful export.

● Create a field mapping based on the extracted data.

● Extract and manage locales for migrating language data

extractContentTypes Function

Overview

This module provides utilities to extract and save Contentful content type definitions along
with their associated editor interfaces. The data is processed and saved as structured JSON
files for use in CMS migration or synchronization pipelines.

Function: extractContentTypes(filePath, prefix)

Description:

If you have any questions, please reach out to tso-migration@contentstack.com.

https://docs.google.com/document/d/11M9OUyaAO5eu3Wt-V5hhLzis7ExFhdhJqG-4XY4aOHs/edit?tab=t.vzy8zuqlem8y
https://docs.google.com/document/d/11M9OUyaAO5eu3Wt-V5hhLzis7ExFhdhJqG-4XY4aOHs/edit?tab=t.32gbkd7ckhmm
mailto:tso-migration@contentstack.com

Reads a file containing Contentful content types and editor interfaces, processes them, and
saves each content type in a structured format.

Parameters:

● filePath (string): Path to the file containing the exported Contentful content model.

● prefix (string): Prefix to namespace or label the saved field definitions.

Returns:

● Promise<void>: Resolves when content types are successfully processed and saved.

Behavior:

1. Checks if the folder at contentfulFolderPath exists. If not, it creates it.

2. Reads the input file and extracts contentTypes and editorInterfaces.

3. If contentTypes exist, it delegates processing to saveContentType(). Otherwise, it
logs "No content-type found".

Throws:

● Logs and throws an error if reading the file or saving data fails.

Function: saveContentType(contentTypes, editorInterface, prefix)

Description:

Processes each content type and its fields by matching them with their respective editor controls
and saves the data to JSON files.

Parameters:

● contentTypes (Array<Object>): Array of content type definitions.

● editorInterface (Array<Object>): Array of editor configurations for fields.

● prefix (string): Used to label field data.

If you have any questions, please reach out to tso-migration@contentstack.com.

mailto:tso-migration@contentstack.com

Returns:

● void: This function writes files and does not return anything.

Behavior:

1. Converts the sys.id of each content type into snake_case.

2. Finds the matching editor interface by comparing content type IDs.

3. Merges field definitions with their widget/editor info.

4. Saves each content type as a prettified .json file in the target folder.

Output File:

Each content type gets its own .json file named after its cleaned-up title (special characters
removed, first letter capitalized).

Output Format (per field):

Each saved JSON array contains objects with the following keys:

● prefix

● contentUid

● contentDescription

● contentfulID

● id, name, type, localized, required, validations, disabled, omitted (from
field definition)

● widgetId (from editor interface)

If you have any questions, please reach out to tso-migration@contentstack.com.

mailto:tso-migration@contentstack.com

JavaScript

JavaScript

● contentNames (list of all content type IDs)

📄 createInitialMapper Function
Overview

The createInitialMapper function reads content model data exported from Contentful,
transforms each model into a Contentstack-compatible schema format, and returns a complete
mapping of content types.

It is typically used during CMS migrations or synchronization processes between Contentful and
Contentstack.

📦 Function Signature

const createInitialMapper = async () => { ... }

🔧 Inputs
● None were directly passed.

Reads files from:

path.resolve(process.cwd(), `${config.data}/${config.contentful.contentful}`)

● where each file contains field definitions for a Contentful content type.

📤 Output
An object in the following structure:

If you have any questions, please reach out to tso-migration@contentstack.com.

mailto:tso-migration@contentstack.com

JavaScript

{

 contentTypes: [...] // array of content type mapping objects

}

Each contentType object contains:

Field Type Description

status number Indicates active state (1 = active)

isUpdated boolean Whether the mapping was updated

updateAt string Timestamp (left blank initially)

otherCmsTitle string Content type title from Contentful

otherCmsUid string UID from Contentful (contentfulID)

contentstackTitle string Transformed title for Contentstack (Capitalized)

contentstackUid string UID for Contentstack, corrected with
uidCorrector()

type string Always 'content_type'

If you have any questions, please reach out to tso-migration@contentstack.com.

mailto:tso-migration@contentstack.com

JavaScript

JavaScript

fieldMapping array An array of field definitions, including system
fields

⚙ Internal Logic
1. Read Files

const files = await fs.readdir(...);

Gets all JSON files representing Contentful content types.

2. Iterate Files

for (const file of files) { ... }

For each file:

● Reads field definitions

● Derives content type title from filename

3. Build Schema Object

Each object includes:

● Metadata about the content type

● Default fields (title and url) added manually

● Custom fields generated via contentTypeMapper()

4. Generate Fields

If you have any questions, please reach out to tso-migration@contentstack.com.

mailto:tso-migration@contentstack.com

JavaScript

JavaScript

const contentstackFields = [...uidTitle,
...contentTypeMapper(data)].filter(Boolean);

● uidTitle: Hardcoded default fields for title and url

● contentTypeMapper(data): Dynamically maps Contentful fields to Contentstack
schema

5. Delete Temporary Folder

deleteFolderSync(path.resolve(...));

Removes the data folder after processing to avoid re-use or conflicts.

6. Return Result

Returns the final list of mapped content types for further use.

🛑 Error Handling
Any error during file reading, transformation, or folder deletion is caught and logged:

js

CopyEdit

console.error('Error saving content type:', error);

Example Return

{

 "contentTypes": [

If you have any questions, please reach out to tso-migration@contentstack.com.

mailto:tso-migration@contentstack.com

 {

 "status": 1,

 "isUpdated": false,

 "updateAt": "",

 "otherCmsTitle": "blogPost",

 "otherCmsUid": "blogPostID",

 "contentstackTitle": "BlogPost",

 "contentstackUid": "blog_post",

 "type": "content_type",

 "fieldMapping": [

 {

 "uid": "title",

 "contentstackFieldType": "text",

 ...

 },

 ...

]

 }

]

}

🔗 Related Functions
● contentTypeMapper: Converts each Contentful field to Contentstack schema.

● uidCorrector: Normalizes field UIDs.

If you have any questions, please reach out to tso-migration@contentstack.com.

mailto:tso-migration@contentstack.com

JavaScript

● extractAdvancedFields: Injects metadata (e.g., mandatory, unique).

● deleteFolderSync: Cleans up local temporary directories.

📄 contentTypeMapper Function
Overview

The contentTypeMapper function is a comprehensive mapping utility that transforms a
content model structure (typically from a CMS like Contentful) into a schema array suitable for
another CMS (like Contentstack). Here's a breakdown of how it works and what each section
does — suitable for use in developer documentation:

📌 Function Purpose
The contentTypeMapper function takes an array of content field definitions (data) and
returns a normalized array of schema objects formatted for Contentstack. It supports various
field types, widget configurations, and advanced metadata.

🧩 Function Signature

const contentTypeMapper = (data) => { ... };

● Input: data – An array of field definition objects, typically exported from a CMS source.

● Output: schemaArray – An array of transformed field objects structured for
Contentstack.

🧠 Core Logic (How it Works)
1. Iterate Through Input Data

data.reduce((acc, item) => { ... }, []);

Each field (item) in the data array is processed based on its type and widgetId.

If you have any questions, please reach out to tso-migration@contentstack.com.

mailto:tso-migration@contentstack.com

2. Handle Different Field Types

✅ Rich Text

● Calls arrangeRte to resolve references.

● Uses createFieldObject with json type.

✅ Symbol, Text

● Handles widgets like singleLine, urlEditor, slugEditor, multipleLine,
markdown, dropdown, radio, tagEditor, and listInput.

✅ Number, Integer

● Maps editors to number, or re-maps to dropdownNumber, radioNumber, etc.

✅ Date

● Mapped directly to isodate.

✅ Array, Link

● Assets (Images, Files): Mapped to file, with .multiple = true if it's an array.

● Entries (References):

○ Parses linkContentType from validations.

○ Derives references (referenceFields) using helper logic.

○ Uses createFieldObject with reference type.

● Checkbox, Tag Editor, List Input: Mapped appropriately.

✅ Boolean

● Mapped to boolean.

✅ Object

● If widgetId is an objectEditor, marked as app type.

● Otherwise, enriches the name using app metadata from appDetails.

✅ Location

If you have any questions, please reach out to tso-migration@contentstack.com.

mailto:tso-migration@contentstack.com

JavaScript

● Creates a group field plus subfields for lat and lon.

3. Helper Function: createFieldObject

This standardizes the schema field output:

{

 uid,

 otherCmsField,

 otherCmsType,

 contentstackField,

 contentstackFieldUid,

 contentstackFieldType,

 backupFieldType,

 backupFieldUid,

 advanced

}

Where advanced comes from extractAdvancedFields, providing details like:

● mandatory

● unique

● nonLocalizable

● referenceFields (when applicable)

🔧 Special Logic
● uidCorrector() is used to standardize IDs for compatibility.

If you have any questions, please reach out to tso-migration@contentstack.com.

mailto:tso-migration@contentstack.com

● Conditional checks on item.items, validations, and widgetId ensure the mapper
handles deeply nested or loosely structured fields gracefully.

● References are deduplicated and capped for performance (slice(0, 9) or length <
25).

🏷 Console Logging
For widgets like tagEditor or listInput, a console.info() is called — likely for
debugging purposes.

✅ Summary
This function is critical in migrating or transforming content model definitions from one CMS to
another. It ensures:

● Widget-specific logic is respected

● Reference relationships are preserved

● Fields are enriched with necessary metadata

● Complex widgets like Location, Object, and Reference are handled correctly

📄 extractLocale Function
📝 Description

This function extracts unique locale codes (e.g., en-us, fr-fr) from a Contentful JSON
export and returns them in an array. These locale codes are later pushed to the database via a
backend API to support localization in a new CMS like Contentstack.

📦 Dependencies

● jsonFilePath: Path to the exported JSON file from Contentful.

If you have any questions, please reach out to tso-migration@contentstack.com.

mailto:tso-migration@contentstack.com

JavaScript

● fs (Node.js built-in): Used to read the file contents.

🔧 Function: extractLocale

Purpose

Extracts and returns a list of unique locale codes used in the legacy CMS.

Parameters

● jsonFilePath (string) – File path to the exported Contentful data (JSON format).

Returns

Array<string> – A list of unique locale codes.
 Example:

['en-us', 'fr-fr']

● Returns an empty array [] if:

○ No locales are found.

○ The file is missing or invalid.

Behavior

● Validates the file path and JSON structure.

● Parses the JSON and extracts values from the locales array.

● Collects unique locale codes (locale.code).

● Handles and logs errors gracefully.

📌 Example Usage

If you have any questions, please reach out to tso-migration@contentstack.com.

mailto:tso-migration@contentstack.com

JavaScript

const extractLocale = require('./libs/extractLocale');

(async () => {

 const locales = await extractLocale('./legacy-export.json');

 console.log('Locales found:', locales);

})();

⚙ Validator Contentful

 🧾 Overview
The Contentful Validator verifies that a JSON content model exported from Contentful contains
all required properties as defined in a configuration schema (contentful.json). It is used as
a pre-validation step before transforming or migrating content models into another CMS like
Contentstack.

🔧 Function: contentfulValidator(data: string)

Description:

Validates a raw JSON string exported from Contentful against a required schema definition
provided in contentful.json.

Parameters:

● data (string): Raw JSON content model as a string (from Contentful)

Returns:

✅ true if:

● All required properties listed in the config are present in the parsed JSON object.

❌ false if:

● Any required property is missing.

If you have any questions, please reach out to tso-migration@contentstack.com.

mailto:tso-migration@contentstack.com

JavaScript

JavaScript

JavaScript

● The JSON is malformed or cannot be parsed.

🔧 Internal Logic

1. Parse the JSON input

jsonData = JSON.parse(data);

1. Attempts to parse the input string into a valid JavaScript object.

2. If parsing fails, the function returns false.

2. Iterate Over Config Schema

Object.values(jsonConfig).every((prop: any) => { ... });

1. Loops through each field defined in the contentful.json schema.

3. Validate Each Property

if (jsonData?.hasOwnProperty(prop?.name)) {

 return true;

}

else if (prop?.required === 'true') {

 return false;

}

return true;

1. Checks if the required properties exist in the parsed jsonData.

2. If a required property is missing, the function short-circuits and returns false.

If you have any questions, please reach out to tso-migration@contentstack.com.

mailto:tso-migration@contentstack.com

JavaScript

JavaScript

4. ❗ Error Handling

try { ... } catch (error) {

 return false;

}

1. The function handles all parsing or runtime errors.

2. If parsing fails or unexpected data structures are encountered, false is returned

without throwing.

✅ Example Usage

import contentfulValidator from './validators/contentful-validator';

import fs from 'fs';

const rawData = fs.readFileSync('contentful-export.json', 'utf-8');

if (contentfulValidator(rawData)) {

 console.log('✅ Contentful schema is valid!');

} else {

 console.error('❌ Invalid schema: Missing required fields or bad JSON.');

}

Running the upload-api Project on Any Operating
System
The following instructions will guide you in running the upload-api folder on any operating
system, including Windows and macOS.

If you have any questions, please reach out to tso-migration@contentstack.com.

mailto:tso-migration@contentstack.com

Shell

Shell

Starting the upload-api Project

There are two methods to start the upload-api project:

Method 1:
 Run the following command from the root directory of your project:

npm run upload

This command will directly start the upload-api package.

Method 2:
 Navigate to the upload-api directory manually and run the development server:

cd upload-api

npm run start

This approach starts the upload-api from within its own directory.

Restarting After Termination

If the project terminates unexpectedly, you can restart it by following the same steps outlined
above. Choose either Method 1 or Method 2 to relaunch the service.

Limitations

1. Not handle the use case of deletion of existing destination stack in runtime

2. Content mapper module | existing stack | existing content type mapped | Modular
blocks, taxonomy these fields can be matched with Single Line Textbox field

3. Content Type Migration Limitations in Test Stacks

When migrating content types in a test stack, the handling of attached references
depends on your organization's reference limit:

● Organizations with a reference limit of 50: Full data migration is supported if a
content type has more than 10 references.

● Organizations with a reference limit of 10: If a content type has more than 10

If you have any questions, please reach out to tso-migration@contentstack.com.

mailto:tso-migration@contentstack.com

references, only the 'title' and 'URL' fields will be migrated.

4. Issue: Data migration may encounter unforeseen problems if the Contentful data
contains duplicate UIDs.

If you have any questions, please reach out to tso-migration@contentstack.com.

mailto:tso-migration@contentstack.com

	CMS Connector API - Contentful
	migration-contentful Package
	Overview
	Installation
	Key Functions
	How to Use

	extractContentTypes Function
	Overview
	Function: extractContentTypes(filePath, prefix)
	Description:
	Parameters:
	Returns:
	Behavior:
	Throws:

	Function: saveContentType(contentTypes, editorInterface, prefix)
	Description:
	Parameters:
	Returns:

	Behavior:
	Output File:
	Output Format (per field):

	📄 createInitialMapper Function
	Overview
	📦 Function Signature
	🔧 Inputs
	📤 Output
	⚙️ Internal Logic
	1. Read Files
	2. Iterate Files
	3. Build Schema Object
	4. Generate Fields
	5. Delete Temporary Folder
	6. Return Result

	🛑 Error Handling
	Example Return
	🔗 Related Functions

	📄 contentTypeMapper Function
	Overview
	📌 Function Purpose
	🧩 Function Signature
	🧠 Core Logic (How it Works)
	1. Iterate Through Input Data
	2. Handle Different Field Types
	✅ Rich Text
	✅ Symbol, Text
	✅ Number, Integer
	✅ Date
	✅ Array, Link
	✅ Boolean
	✅ Object
	✅ Location

	3. Helper Function: createFieldObject

	🔧 Special Logic
	🏷️ Console Logging
	✅ Summary
	📄 extractLocale Function
	📝 Description
	📦 Dependencies
	🔧 Function: extractLocale
	Purpose
	Parameters
	Returns
	Behavior

	📌 Example Usage

	⚙️ Validator Contentful
	 🧾 Overview
	🔧 Function: contentfulValidator(data: string)
	Description:
	Parameters:
	Returns:

	🔧 Internal Logic
	1.Parse the JSON input
	2.Iterate Over Config Schema
	3.Validate Each Property
	4.❗ Error Handling

	✅ Example Usage
	Running the upload-api Project on Any Operating System
	Starting the upload-api Project
	Restarting After Termination

	Limitations

